# Composing predicates

A few days ago I was writing some validation functions that were basically a composition of several other predicates.

Which would look something like this:

```
predA :: a -> Bool
predB :: a -> Bool
predC :: a -> Bool
predABC :: a -> Bool
predABC a = predA a && predB a && predC a
```

A Haskeller would be bothered by having to manually pass `a`

to all the predicates. A **true** Haskeller would not, probably. But I'm far from that level of enlightenment. So I decided to find a way to compose predicates.

Note that by compose I mean not function composition but to combine two predicates together to get a new one. Either by conjunction (`&&`

) or disjunction (`||`

).

## Monoids

Since Monoids let us combine things, they were bound to show up in my search.

As we said, booleans (and predicates) can be combined in more than one way, so there isn't a default Monoid instance for Bool.

`Data.Monoid`

defines:

```
λ> getAll (All True <> All False)
False
λ> getAll (All True <> All True)
True
```

```
λ> getAny (Any True <> Any False)
True
λ> getAny (Any False <> Any False)
False
```

Since the goal is to compose not booleans but predicates, we need to some mapping and folding to achieve that.

```
predABC :: a -> Bool
predABC = getAll . foldMap (All .) [predA, predB, predC]
```

```
λ> predABC a
True
λ> predABC b
True
λ> predABC z
False
```

Success? Well, it works and we can add as many predicates as we like with very low effort. But to compose just three predicates I'm not sure if it's worth.

## Applicative

If there are two ways to do this, there has to be a third.

From #100DaysOfFP Day 33

Applicative instance of (->) functions allows to apply an argument (x) to two unary functions (f & g) and then apply the result of each to a third function (h) to produce the result (y).

That's exactly what I want!

```
(&&&) :: (a -> Bool) -> (a -> Bool) -> a -> Bool
f &&& g = (&&) <$> f <*> g
(|||) :: (a -> Bool) -> (a -> Bool) -> a -> Bool
f ||| g = (||) <$> f <*> g
```

Composing the predicates is way simpler now

```
predABC :: a -> Bool
predABC = predA &&& predB &&& predC
```

And is possible to use both combinators. Which was not possible with Monoids (*most probably is possible but not as straightforward*).

```
predAandBorC :: a -> Bool
predAandBorC = predA &&& predB ||| predC
```

Yup, I'm going to stick with those for combining my predicates 😏

One more thing, I declared the types of `(&&&)`

and `(|||)`

specified for the function instance of applicative. But they could work with any applicative.

```
(&&&) :: Applicative f => f Bool -> f Bool -> f Bool
f &&& g = (&&) <$> f <*> g
(|||) :: Applicative f => f Bool -> f Bool -> f Bool
f ||| g = (||) <$> f <*> g
```

```
λ> (Just True) &&& (Just False)
Just False
λ> (Just True) &&& (Just True)
Just True
λ> (Just False) &&& (Just False)
Just False
```

Yet another thing. `liftA2`

could make the implementations even shorter.

```
(&&&) :: Applicative f => f Bool -> f Bool -> f Bool
(&&&) = liftA2 (&&)
(|||) :: Applicative f => f Bool -> f Bool -> f Bool
(|||) = liftA2 (||)
```

**Happy and safe coding** 🦄